首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   292篇
  免费   9篇
  国内免费   1篇
化学   101篇
力学   2篇
数学   64篇
物理学   135篇
  2020年   5篇
  2019年   4篇
  2016年   9篇
  2015年   8篇
  2014年   6篇
  2013年   8篇
  2012年   8篇
  2011年   16篇
  2010年   7篇
  2009年   9篇
  2008年   8篇
  2007年   8篇
  2006年   9篇
  2005年   8篇
  2004年   10篇
  2003年   10篇
  2002年   8篇
  2001年   4篇
  2000年   10篇
  1999年   5篇
  1998年   5篇
  1995年   3篇
  1994年   11篇
  1993年   4篇
  1992年   6篇
  1991年   3篇
  1988年   3篇
  1987年   6篇
  1986年   4篇
  1985年   4篇
  1984年   3篇
  1983年   4篇
  1981年   10篇
  1980年   5篇
  1978年   2篇
  1977年   6篇
  1976年   3篇
  1974年   3篇
  1973年   5篇
  1972年   4篇
  1971年   4篇
  1969年   2篇
  1968年   7篇
  1962年   2篇
  1960年   2篇
  1958年   2篇
  1926年   2篇
  1893年   2篇
  1891年   2篇
  1890年   2篇
排序方式: 共有302条查询结果,搜索用时 203 毫秒
71.
72.
73.
We have used the single‐pulse shock tube technique with postshock GC/MS product analysis to investigate the mechanism and kinetics of the unimolecular decomposition of isopropanol, a potential biofuel, and of its reaction with H atoms at 918‐1212 K and 183‐484 kPa. Experiments employed dilute mixtures in argon of isopropanol, a radical scavenger, and, for H‐atom studies, two different thermal precursors of H. Without an added H source, isopropanol decomposes in our studies predominantly by molecular dehydration. Added H atoms significantly augment decomposition, mainly by abstraction of the tertiary and primary hydrogens, reactions that, respectively, lead to acetone and propene as stable organic products. Traces of acetaldehyde were observed in some experiments above ≈ 1100 K and establish branching limits for minor decomposition pathways. To quantitatively account for secondary chemistry and optimize rate constants of interest, we employed the method of uncertainty minimization using polynomial chaos expansions (MUM‐PCE) to carry out a unified analysis of all datasets using a chemical model–based originally on JetSurF 2.0. We find: k(isopropanol → propene + H2O) = 10(13.87 ± 0.69) exp(?(33 099 ± 979) K/ T) s?1 at 979‐1212 K and 286‐484 kPa, with a factor of two uncertainty (2σ), including systematic errors. For H atom reactions, optimization yields: k(H + isopropanol → H2 + p‐C3H6OH) = 10(6.25 ± 0.42) T2.54 exp(?(3993 ± 1028) K /T) cm3 mol?1 s?1 and k(H + isopropanol → H2 + t‐C3H6OH) = 10(5.83 ± 0.37) T2.40 exp(?(1507 ± 957) K /T) cm3 mol?1 s?1 at 918‐1142 K and 183‐323 kPa. We compare our measured rate constants with estimates used in current combustion models and discuss how hydrocarbon functionalization with an OH group affects H abstraction rates.  相似文献   
74.
Ohne Zusammenfassung  相似文献   
75.
76.
77.
Catalytic properties of two glucoamylases, AmyC and AmyD, without starch binding domains from Rhizopus oryzae strain 99-880 are determined using heterologously expressed enzyme purified to homogeneity. AmyC and AmyD demonstrate pH optima of 5.5 and 6.0, respectively, nearly one unit higher than the Rhizopus AmyA glucoamylase enzyme. Optimal initial activities are at 60 and 50 °C for AmyC and AmyD, respectively. Inactivation of both enzymes occurs at 50 °C following 30 min pre-incubation. The two enzymes demonstrate substantially slower catalytic rates toward soluble starch relative to AmyA. AmyC has similar k cat and K m for oligosaccharides to other Rhizopus and Aspergillus glucoamylases; however, the enzyme has a 2-fold lower K mmaltose. AmyD has a 3-fold higher K m and lower k cat for maltooligosaccharides than AmyC and other glucoamylases. AmyC (but not AmyD) exhibits substrate inhibition. K i for substrate inhibition decreases with increasing length of the oligosaccharides. Data from pre-steady-state binding of AmyC to maltose and maltotriose and pre-steady-state to steady-state catalytic turnover experiments of AmyC acting on maltotriose were used to interrogate models of substrate inhibition. In the preferred model, AmyC accumulates an enzyme-maltose-maltotriose dead-end complex in the steady state.  相似文献   
78.
The pozzolanic reaction between natural zeolite tuffs, portlandite and water was investigated over the course of the early reaction period up to 3 days. Isothermal conduction calorimetry experiments supplemented by TG/DTG and XRD analyses assisted in the elucidation of the sequence of reaction processes taking place. The calorimetry experiments clearly showed the dependence of the pozzolanic reaction rate and associated heat release on the fineness of the zeolite tuff. Higher external surface areas of pozzolans yield higher total heat releases. Also the exchangeable cation content of the zeolites influences the reaction rate. Release of exchangeable alkalis into solution promotes the pozzolanic reaction by raising the pH and zeolite solubility. The appearance of an exotherm after approximately 3 h of reaction is more conspicuous when alkali-rich zeolites are reacted. This exotherm is conceived to be related to a transformation or rupture of initially formed reaction products covering the zeolite grains. The formation of substantial amounts of ‘stable’ calcium silicate hydrate (C–S–H) and calcium aluminate hydrate (C–A–H) reaction took place after an induction period of more than 6 h. The openness of the zeolite framework affects the proneness of the zeolite to dissolution and thus its reactivity. Open framework zeolites such as chabazite were observed to react much more rapidly than closed framework zeolites such as analcime.  相似文献   
79.
80.
During the Belgian PCB crisis (1999/2000) the quality of the data from the PCB monitoring were studied with a proficiency testing experiment. Pork fat that was spiked at the Institute for Reference Materials and Measurements (EC-JRC-IRMM) was sent out as unknown to all laboratories that participated in the monitoring. In parallel, the material was certified on the basis of the results of several leading PCB laboratories throughout Europe that did not participate in the monitoring. During the first round 15 to 25% deviation was experienced, while in the end of this multistep intercalibration procedure the average deviation for the respective PCBs was 10.9% (PCB 28), 13.1% (PCB 52), 10.1% (PCB 101), 10.7% (PCB 118), 10.7% (PCB 138), 9.1% (PCB 153), 8.1% (PCB 180) and 8.2% for the sum of the 7 PCBs. The concentrations measured for the higher volatile PCB 28 had a tendency to show lower levels, while for PCB 180 this was less pronounced. On the other hand, PCB 153 showed results rather to the higher side. During this exercise the material was also tested for stability by one of the certifying laboratories.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号